0 CpxTRS
↳1 DependencyGraphProof (BOTH BOUNDS(ID, ID), 6 ms)
↳2 CpxTRS
↳3 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxWeightedTrs
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxTypedWeightedTrs
↳7 CompletionProof (UPPER BOUND(ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 CompleteCoflocoProof (⇔, 43 ms)
↳12 BOUNDS(1, 1)
f(c(c(a, y, a), b(x, z), a)) → b(y, f(c(f(a), z, z)))
f(b(b(x, f(y)), z)) → c(z, x, f(b(b(f(a), y), y)))
c(b(a, a), b(y, z), x) → b(a, b(z, z))
c(b(a, a), b(y, z), x) → b(a, b(z, z))
c(b(a, a), b(y, z), x) → b(a, b(z, z)) [1]
c(b(a, a), b(y, z), x) → b(a, b(z, z)) [1]
c :: a:b → a:b → a → a:b b :: a:b → a:b → a:b a :: a:b |
c(v0, v1, v2) → null_c [0]
null_c, const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
a => 0
null_c => 0
const => 0
c(z', z'', z1) -{ 0 }→ 0 :|: v0 >= 0, z1 = v2, v1 >= 0, z'' = v1, v2 >= 0, z' = v0
c(z', z'', z1) -{ 1 }→ 1 + 0 + (1 + z + z) :|: z >= 0, z' = 1 + 0 + 0, y >= 0, x >= 0, z'' = 1 + y + z, z1 = x
eq(start(V, V1, V2),0,[c(V, V1, V2, Out)],[V >= 0,V1 >= 0,V2 >= 0]). eq(c(V, V1, V2, Out),1,[],[Out = 2 + 2*V3,V3 >= 0,V = 1,V4 >= 0,V5 >= 0,V1 = 1 + V3 + V4,V2 = V5]). eq(c(V, V1, V2, Out),0,[],[Out = 0,V6 >= 0,V2 = V7,V8 >= 0,V1 = V8,V7 >= 0,V = V6]). input_output_vars(c(V,V1,V2,Out),[V,V1,V2],[Out]). |
CoFloCo proof output:
Preprocessing Cost Relations
=====================================
#### Computed strongly connected components
0. non_recursive : [c/4]
1. non_recursive : [start/3]
#### Obtained direct recursion through partial evaluation
0. SCC is partially evaluated into c/4
1. SCC is partially evaluated into start/3
Control-Flow Refinement of Cost Relations
=====================================
### Specialization of cost equations c/4
* CE 4 is refined into CE [5]
* CE 3 is refined into CE [6]
### Cost equations --> "Loop" of c/4
* CEs [5] --> Loop 4
* CEs [6] --> Loop 5
### Ranking functions of CR c(V,V1,V2,Out)
#### Partial ranking functions of CR c(V,V1,V2,Out)
### Specialization of cost equations start/3
* CE 2 is refined into CE [7,8]
### Cost equations --> "Loop" of start/3
* CEs [7,8] --> Loop 6
### Ranking functions of CR start(V,V1,V2)
#### Partial ranking functions of CR start(V,V1,V2)
Computing Bounds
=====================================
#### Cost of chains of c(V,V1,V2,Out):
* Chain [5]: 1
with precondition: [V=1,V2>=0,Out>=2,2*V1>=Out]
* Chain [4]: 0
with precondition: [Out=0,V>=0,V1>=0,V2>=0]
#### Cost of chains of start(V,V1,V2):
* Chain [6]: 1
with precondition: [V>=0,V1>=0,V2>=0]
Closed-form bounds of start(V,V1,V2):
-------------------------------------
* Chain [6] with precondition: [V>=0,V1>=0,V2>=0]
- Upper bound: 1
- Complexity: constant
### Maximum cost of start(V,V1,V2): 1
Asymptotic class: constant
* Total analysis performed in 31 ms.